Occupancy Probability Page 2


Now, let's determine the probability of getting all 3 numbers after four spins of our roulette wheel.

First, we calculate that there are 34 (or 81) results after 4 spins.
Notice that in this case, it is much more difficult to determine and to list these 81 results than it was when we were listing just 27 numbers.


  1 1 1 1     1 1 1 2     1 1 1 3     1 1 2 1     1 1 2 2     1 1 2 3     1 1 3 1     1 1 3 2     1 1 3 3  
  1 2 1 1     1 2 1 2     1 2 1 3     1 2 2 1     1 2 2 2     1 2 2 3     1 2 3 1     1 2 3 2     1 2 3 3  
  1 3 1 1     1 3 1 2     1 3 1 3     1 3 2 1     1 3 2 2     1 3 2 3     1 3 3 1     1 3 3 2     1 3 3 3  
  2 1 1 1     2 1 1 2     2 1 1 3     2 1 2 1     2 1 2 2     2 1 2 3     2 1 3 1     2 1 3 2     2 1 3 3  
  2 2 1 1     2 2 1 2     2 2 1 3     2 2 2 1     2 2 2 2     2 2 2 3     2 2 3 1     2 2 3 2     2 2 3 3  
  2 3 1 1     2 3 1 2     2 3 1 3     2 3 2 1     2 3 2 2     2 3 2 3     2 3 3 1     2 3 3 2     2 3 3 3  
  3 1 1 1     3 1 1 2     3 1 1 3     3 1 2 1     3 1 2 2     3 1 2 3     3 1 3 1     3 1 3 2     3 1 3 3  
  3 2 1 1     3 2 1 2     3 2 1 3     3 2 2 1     3 2 2 2     3 2 2 3     3 2 3 1     3 2 3 2     3 2 3 3  
  3 3 1 1     3 3 1 2     3 3 1 3     3 3 2 1     3 3 2 2     3 3 2 3     3 3 3 1     3 3 3 2     3 3 3 3  

That list of 81 numbers contains all the results of 4 spins of a three-numbered roulette wheel.


Next, we must search that list to see how many of those 81 numbers contain "1 2 3 " in any order.
It turns out that there are 36 such occurrences:
  1 1 2 3     1 1 3 2     1 2 1 3     1 2 2 3     1 2 3 1     1 2 3 2     1 2 3 3     1 3 1 2     1 3 2 1  
  1 3 2 2     1 3 2 3     1 3 3 2     2 1 1 3     2 1 2 3     2 1 3 1     2 1 3 2     2 1 3 3     2 2 1 3  
  2 2 3 1     2 3 1 1     2 3 1 2     2 3 1 3     2 3 2 1     2 3 3 1     3 1 1 2     3 1 2 1     3 1 2 2  
  3 1 2 3     3 1 3 2     3 2 1 1     3 2 1 2     3 2 1 3     3 2 2 1     3 2 3 1     3 3 1 2     3 3 2 1  

We see there are 36 ways out of 81 that we can get all 3 numbers after four spins of the wheel.

Therefore, the probability of that occurring is:

36 ÷ 81 = .44444444...

By now, you are probably thinking that there must be an easier way to do these calculations ... and there is.

Click here to go to Page 3


Return To Home Page

Copyright © 1999 -

1728 Software Systems