Palindromes

A palindrome is a word, sentence or number that reads the same forwards or backwards.
Examples of palindrome words are "racecar", "radar", "kayak", and the longest length palindrome word in the English language is "detartrated".
As far as a palindrome sentence, there is Adam's humorous introduction to Eve, "Madam I'm Adam".

Since this is a mathematics website, we will mainly be concerned with numbers that are palindromes.
We recently lived through 2 palindromic years: 1991 and 2002.
Unfortunately, if you are anxiously waiting for the next palindromic years, those won't occur until 2992 and 3003.

There are 9 palindromes from 1 through 9 and 9 palindromes from 11 through 99.
There are 90 palindromes from 11 through 99 and 90 from 101 through 999.
Basically, this pattern continues throughout all the higher numbers.

Palindromic numbers are of great interest to recreational mathematicians.
For example, a problem in recreational mathematics might require finding numbers that are both squares and palindromic.
Here are the first 28 palindromic squares.
  **  Number  Number²
    1    1² =        1
    2    2² =        4
    3    3² =         9
    4    11² =             121
    5    22² =             484
    6    26² =             676
    7    101² =        10201
    8    111² =        12321
    9    121² =        14641
  10    202² =        40804
  11    212² =        44944
  12    264² =        69696
  13    307² =        94249
  14    836² =      698896
  15    1001² =    1002001
  16    1111² =    1234321
  17    2002² =    4008004
  18    2285² =    5221225
  19    2636² =    6948496
  20    10001² =100020001
  21    10101² =102030201
  22    10201² =104060401
  23    11011² =121242121
  24    11111² =123454321
  25    11211² =125686521
  26    20002² =400080004
  27    20102² =404090404
  28    22865² =522808225

As for palindromic primes, here are the first 110.
Except for 11, notice that all these primes have an odd number of digits?
That is because every even-digit palindrome is a multiple of 11.
  1 to 5   2   3   5   7   11
  6 to 10   101   131   151   181   191
  11 to 15   313   353   373   383   727
  16 to 20   757   787   797   919   929
  21 to 25   10301   10501   10601   11311   11411
  26 to 30   12421   12721   12821   13331   13831
  31 to 35   13931   14341   14741   15451   15551
  36 to 40   16061   16361   16561   16661   17471
  41 to 45   17971   18181   18481   19391   19891
  46 to 50   19991   30103   30203   30403   30703
  51 to 55   30803   31013   31513   32323   32423
  56 to 60   33533   34543   34843   35053   35153
  61 to 65   35353   35753   36263   36563   37273
  66 to 70   37573   38083   38183   38783   39293
  71 to 75   70207   70507   70607   71317   71917
  76 to 80   72227   72727   73037   73237   73637
  81 to 85   74047   74747   75557   76367   76667
  86 to 90   77377   77477   77977   78487   78787
  91 to 95   78887   79397   79697   79997   90709
  96 to 100   91019   93139   93239   93739   94049
  101 to 105   94349   94649   94849   94949   95959
  106 to 110   96269   96469   96769   97379   97579
  111 to 114   97879   98389   98689   1003001
Notice that there are only 113 prime pallindromic numbers that are less than a milllion. In fact, palindromic numbers are almost always composite numbers, (non-prime numbers).


* * * * * * * * * * * * * * * * * * * *
The Reverse and Add Function

Pehaps the most intriguing aspect of palindromic numbers is the reverse and add function.
This is done by taking a number, reversing its digits, then adding both numbers to make a third number.
For example, let's take 29, reverse its digits, then add both numbers.
    29
    92
  121
We can see that after just 1 "reverse and add function", we arrive at 121, which is a palindrome.

Does this work with all numbers?
Let's try 48.
    48
    84
  132
  231
  363
With 48, it requires two "reverse and add functions" (called "iterations"), to reach a palindrome.

We'll try 68.
      68
      86
    154
    605
    506
  1111
Now, it requires three iterations to reach a palindrome.


Looking at the numbers we just calculated, we might assume that 2 digit numbers require just a few iterations to reach a palindrome but this is not the case.
Let's see what happens when we use 89 at the start of the "reverse and add function".

                          89
                          98
Sum 1                         187
*******                         781
Sum 2                         968
*******                         869
Sum 3                       1837
*******                       7381
Sum 4                       9218
*******                       8129
Sum 5                     17347
*******                     74371
Sum 6                     91718
*******                     81719
Sum 7                   173437
*******                   734371
Sum 8                   907808
*******                   808709
Sum 9                 1716517
*******                 7156171
Sum 10                 8872688
*******                 8862788
Sum 11               17735476
*******               67453771
Sum 12               85189247
*******               74298158
Sum 13             159487405
*******             504784951
Sum 14             664272356
*******             653272466
Sum 15           1317544822
*******           2284457131
Sum 16           3602001953
*******           3591002063
Sum 17           7193004016
*******           6104003917
Sum 18         13297007933
*******         33970079231
Sum 19         47267087164
*******         46178076274
Sum 20         93445163438
*******         83436154439
Sum 21       176881317877
*******       778713188671
Sum 22       955594506548
*******       845605495559
Sum 23     1801200002107
*******     7012000021081
Sum 24     8813200023188

Surprisingly, the number 89 reaches a palindrome after 24 iterations!
In fact, of all the numbers less than 10,000, 89 requires the most iterations to become a palindrome.
In other words, the number 89 is the most delayed palindromic number less than 10,000.

Listed below are the "most delayed palindromic numbers" based on the number of digits.
3 digit numbers, 4 digit numbers, 8 digit numbers, etc. are not listed because these numbers require fewer than 24 iterations.
(For example, the 3 digit number 187 requires only 23 iterations and the 4 digit number 1,297 only needs 21.)
  Digits  Number  Iterations
    2                  89  24
    5                10,911  55
    6              150,296  64
    7              9,008,299  96
    9            140,669,390  98
  10         1,005,499,526  109
  11          10,087,799,570  149
  13       1,600,005,969,190  188
  15      100,120,849,299,260  201
  17    10,442,000,392,399,960  236
  19  1,186,060,307,891,929,990  261
  2312,000,700,000,025,339,936,491  288

* * * * * * * * * * * * * * * * * * * *

By now, you might be wondering if all numbers subjected to the reverse and add process eventually reach a palindrome.
Presently, the answer is not known.
If such a number is ever discovered, it will be called a Lychrel number.
The number 196 stands the best chance of never reaching a palindrome because at the moment, 196 has undergone over a billion iterations without yielding a palindrome.

Return To Home Page


Copyright © 1999 - 1728 Software Systems